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Developing cost-effective monitoring protocols for track-surveys: an empirical assessment 1 

using a Canada lynx Lynx canadensis dataset spanning 16 years   2 

Abstract 3 

Management agencies need statistically robust, cost-effective monitoring programs to 4 

effectively conserve and manage wildlife. However, this requires pilot studies to assess the 5 

monitoring protocol’s ability to detect meaningful changes in the state variable of interest. This 6 

is more challenging for elusive mammals due to low detection rates and the costs associated 7 

with fieldwork. A key knowledge gap concerns how spatio-temporal dynamics in species 8 

occupancy and detection rates alter the cost-effectiveness of sampling protocols. To fill this gap 9 

we used a dataset spanning 16 years on Canada lynx (Lynx canadensis) track surveys conducted 10 

in Maine, USA, and developed optimal monitoring protocols that empirically assess the cost-11 

effectiveness of these protocols under different scenarios. We surveyed 96 townships and 12 

detected 949 track intercepts, which were converted to detection histories under a spatially-13 

replicated occupancy design. By combining occupancy modeling and power analyses, we 14 

estimated the sampling effort required to detect declines in occupancy from 10 to 50%. 15 

Calculating the monetary cost of these protocols indicated that detecting subtle changes in 16 

occupancy (<10%) is very expensive even within high suitability habitats and may often be 17 

unrealistic. However, protocols that detected medium (30%) to large (50%) declines required 18 

similar budgets and were consistent with the observed shifts in occupancy during our study 19 

period (34%), suggesting that a modest budget increase would pay large dividends in 20 

population assessment efficacy. Our results provide important guidance on how to implement 21 

robust and cost-effective monitoring programs with snow track surveys – a popular survey 22 

method used by many conservation agencies. 23 

Key-words: Carnivores, Habitat suitability, Occupancy modeling, Optimal sampling allocation, 24 

Power analysis, Maine, USA 25 
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1 Introduction 28 

Population monitoring (i.e., “collection of repeated observations or measurements to evaluate 29 

changes in conditions and progress towards a management objective” (Elzinga and Salzer 30 

2007)) is crucial in wildlife conservation (Yoccoz et al., 2001; Wintle et al., 2010). Indeed, half of 31 

the resources available to conserve threatened species are allocated to research and 32 

monitoring (Buxton et al., 2020). Nevertheless, developing statistically robust, cost-effective 33 

monitoring programs is challenging as it requires clear management objectives and a 34 

combination of pilot field studies with power analyses and optimization algorithms (Legg and 35 

Nagy, 2006). Protocols for monitoring uncommon or elusive mammals are especially difficult to 36 

develop because of the low detection rates and the inherent costs associated with fieldwork 37 

(Kindberg et al., 2009; Boitani and Powell, 2012; Galvez et al., 2016).  38 

Extensive work has been conducted to assess the optimal sampling effort allocation for 39 

mammals under an occupancy modeling framework (Ellis et al., 2012; Steenweg et al., 2016; 40 

Mortelliti et al., 2022). This approach typically entails the collection of detection/non-detection 41 

data to estimate species detection and occupancy probabilities (Mackenzie et al., 2003) 42 

followed by power analyses to estimate the sampling effort required to detect a specific change 43 

in occupancy (e.g. 10% decline) over time at different sites (Steidl et al., 1997). Power analysis 44 

ensures that a monitoring program has sufficient statistical power (i.e. detecting a change in 45 

the population when the change has occurred) to meet management objectives (e.g. detecting 46 

a 10% decrease in occupancy) (Guilleta-Arroita and Lahoz-Monfort, 2012). Previous work has 47 

mostly focused on developing optimal monitoring protocols using camera traps; however, 48 

many conservation agencies employ other survey techniques. 49 

Track surveys (on snow, mud, or track plates) are a widely used method for surveying 50 

mammals, mainly because they are effective, relatively cheap, and easy to implement (Silveira 51 

et al., 2003). Many studies use track surveys to measure habitat selection (Hebblewhite et al., 52 

2011), animal movement (Lomolino, 1990), and occupancy rates (Hines et al., 2010). Snow track 53 

surveys have been extensively used by conservation agencies to survey carnivores such as 54 

wolves (Canis lupus) (Liberg et al., 2012), wolverines (Gulo gulo) (Magoun et al., 2007), and lynx 55 

(Lynx canadensis) (Squires et al., 2004). Nevertheless, few studies have examined the most 56 
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cost-effective way to monitor mammal populations through snow track surveys. Examples of 57 

key unanswered questions are: how does the feasibility and cost-effectiveness of a monitoring 58 

protocol vary with the habitat suitability for a given species? What are the conditions that make 59 

a monitoring protocol infeasible? Can we derive general rules about the cost-effectiveness of 60 

track-survey protocols despite specific details linked to a particular species, location, or 61 

conservation agency? Lack of knowledge on these topics is a significant concern because 62 

conservation budgets are limited and thus quality data must be gathered with minimal 63 

expense.  64 

Though many snow track surveys have evaluated the sampling effort required to 65 

effectively detect changes in occupancy of carnivores (Aing et al., 2011; Liberg et al., 2012; 66 

Whittington et al., 2013), few have translated their results into a formal monitoring protocol. 67 

This is a major shortcoming because the optimal sampling effort is likely to change as a function 68 

of the spatial variation in detection probability, habitat quality, and temporal changes in species 69 

occupancy (Guilleta-Arroita and Lahoz-Monfort, 2012). For example, sites with different 70 

characteristics may require different efforts to detect the same magnitude of change. Similarly, 71 

a decline in occupancy between surveys may indicate the need for a more intense sampling 72 

effort (Mackenzie and Royle, 2005; Guilleta-Arroita and Lahoz-Monfort, 2012). Conservation 73 

agencies have no clear guidelines regarding the cost-effectiveness of snow track surveys and 74 

the conditions under which they will have the power to detect a given change in occupancy 75 

over time. More specifically, we do not fully understand yet how the spatio-temporal dynamics 76 

in species occupancy and detection rates alter the cost-effectiveness of snow track sampling 77 

protocols.  78 

Here we performed an empirical assessment of the cost-effectiveness of monitoring 79 

protocols accounting for operational costs – a key consideration given limited budgets (Galvez 80 

et al., 2016). Our objectives were to 1) identify the sampling effort required to detect a range of 81 

10 to 50% change in occupancy; 2) assess the feasibility of monitoring programs designed to 82 

detect these changes considering fieldwork costs; 3) identify general rules that could guide 83 

practitioners in allocating survey effort. To answer these questions, we used a dataset for 84 

Canada lynx (Lynx canadensis) spanning 16 years in the state of Maine, USA to develop optimal 85 
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monitoring protocols for snow track surveys that are widely relevant to monitoring carnivores 86 

in snowy environments. 87 

2 Material and Methods 88 

2.1 Study area and data collection 89 

Our study was conducted in Maine, northeastern United States (Fig. 1). The average 90 

temperature ranges from -10°C to 19°C, with annual mean precipitation of 113 cm and annual 91 

mean snowfall of 120 cm in the central and northern parts of the state. 92 

The detection history data were collected by the Maine Department of Inland and 93 

Fisheries Wildlife as part of their wintertime Canada lynx snow track survey. This project was 94 

conducted in two periods: 1) between 2003 – 2008 and 2) between 2015 – 2019 on extensive 95 

network of unplowed dirt roads by snowmobile. Trained observers recorded with a GPS all 96 

survey routes and the locations of Canada lynx track intercepts along those trails. Track 97 

intercepts (hereafter “track”) were defined as any trail made by a lynx encountered along the 98 

route that could not be connected to an adjacent lynx trail based on visual examination from 99 

the route.  100 

Surveys were conducted at the township level (i.e. sites) within the Canada lynx 101 

distribution in Maine, encompassing the northern part of the state (Fig. 1). Townships were 102 

used to locate and stratify surveys to guarantee an even distribution across the state, but 103 

surveys in practice exceeded township boundaries (usually 100 km2), thus we used a cell-based 104 

approach to create the detection history (see below). A total of 78 townships were surveyed 105 

during the first period (2003 - 2008) and 58 townships in the second (2015 - 2019), with 40 106 

townships surveyed during both periods.  107 

To ensure spatial replicates and independence among tracks, we subdivided each 108 

township into 5 km x 5 km grid cells, which corresponds to half the size of a male Canada lynx 109 

winter home range in Maine (Vashon et al., 2008) (Fig. 1). We considered these grid cells as 110 

visits within townships (i.e. a space-for-time substitution). On average, each township had 8 111 

grid cells for both survey periods. The detection history refers to the cell scale, where we 112 
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assigned to each cell a detection (1) or non-detection (0) based on whether at least one track 113 

was recorded within the cell. To confirm there was no spatial dependency among detections, 114 

we performed a spline correlogram analysis using the package ncf (Ottar 2020) in program R 115 

version 4.0.3 (R Development Core Team 2021) (Fig. A1).  116 

Variables collected during the surveys and used as covariates in the analyses were the 117 

travel distance within each grid cell (in km) and the time since the last snowfall in each 118 

township (in hours). For both survey periods, the average travel distance per cell was 119 

approximately 9.5 km, and the time since the last snowfall varied from 12 to 84 h (average = 40 120 

h, but two townships were surveyed 182 and 206 h after a snowfall).  121 

We also collected GIS layers for the entire state of Maine that could affect Canada lynx 122 

detection and occupancy probabilities such as the proportion of conifer forest (GAP/LANDFIRE 123 

National Terrestrial Ecosystem, 2016), forest disturbance index, and terrain roughness index. 124 

The forest disturbance index was calculated using Landsat imagery processed by Kilbride (2018) 125 

in which we extracted the intensity and the year of the most recent forest loss event and 126 

combined them into a single variable (Mortelliti et al., 2022; Evans and Mortelliti, 2022) 127 

(Supplementary material Appendix B). The terrain roughness index was calculated using a 128 

Maine elevation map extracted from the R package elevatr (Hollister, 2020). We scaled all GIS 129 

layers (conifer forest, disturbance index, and terrain roughness index) to the township level (i.e. 130 

we calculated the average of all 30 m pixels within a township) and to an 8 km radius buffer 131 

around each township. We also extracted the centroid coordinates of each township to use as 132 

covariates as they are often associated with climatic (temperature) and anthropogenic 133 

(urbanization) variables in Maine. This data processing was performed in ArcGIS Pro 2.8.  134 

2.2 Occupancy models 135 

To estimate Canada lynx occupancy and detection probabilities, we fit single-season occupancy 136 

models using the unmarked (Fiske and Chandler 2011) package in R for each survey period 137 

separately. We used single-season models because only half (51%) of the townships surveyed in 138 

the first period were revisited in the second survey, thus precluding us from adopting a multi-139 

season modeling approach (Mackenzie et al., 2003).  140 
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We included travel distance as an observation-level variable (i.e., grid cell) and time 141 

since snow, conifer forest, forest disturbance, terrain roughness, latitude, and longitude as site 142 

variables (i.e. township level). For conifer forest, forest disturbance, and terrain roughness, we 143 

also included an 8 km buffer around the township. In practice, no variables included in the 144 

same model had a correlation > 0.2.  145 

We followed a forward stepwise approach to estimate detection and occupancy 146 

probabilities. First, we modeled detection probability (p) as a function of travel distance, time 147 

since snow, latitude, longitude, forest disturbance index, and conifer forest. We used the 148 

Akaike Information Criterion to rank competing models (Burnham and Anderson 2002), and 149 

inference was made using models within 2 ΔAIC of the top model. We first tested single 150 

variable models and then tested additive models if more than one model ranked within 2 ΔAIC 151 

and if it did not include the same feature at different scales (e.g. disturbance at township and 152 

buffer levels). Then, we retained the top model for the detection process and modeled 153 

occupancy probability (ψ) using the following predictors: latitude, longitude, forest disturbance, 154 

conifer forest, and terrain roughness. We quantified model fit using Nagelkerke’s R-squared 155 

through R package unmarked (Fiske and Chandler, 2011).  156 

2.3 Sampling effort 157 

To estimate the sample size required to detect changes in Canada lynx occupancy in northern 158 

Maine, we used the algorithms developed by Guillera-Arroita and Lahoz-Monfort (2012). 159 

Specifically, Guillera-Arroita and Lahoz-Monfort (2012) provide a closed-formula that allows the 160 

calculation of the number of survey sites they need to survey to detect differences in 161 

occupancy under imperfect detection with a specific power. These algorithms determine the 162 

sample size (i.e. number of townships) needed to achieve a specific power as a function of the 163 

significance level (alpha) and effect size (percent decline to be detected) given occupancy 164 

probability ψ, detection probability p, and the number of visits (number of surveyed cells).  165 

Alpha (the probability of a type I error, detecting a decline when it is not there) was set 166 

at 0.1 in all analyses. We chose this value because of the trade-off between type I and type II 167 

errors (not detecting a decline when it is there), and for conservation research, a type II error 168 
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can have more severe negative consequences (Di Stefano, 2001; Legg and Nagy, 2006). The 169 

effect size corresponds to management objectives determined with stakeholders (Maine 170 

Department of Inland Fisheries Wildlife). We developed sampling protocols to detect declines in 171 

occupancy from 10 to 50% in 5% increments (i.e. 10%, 15%, 20%, up to 50%). Based on the 172 

change in the occupancy probability between the two survey periods (see Results), we focused 173 

our protocol on three degrees of decline: 10% (minor), 30% (moderate), and 50% (extreme). 174 

The power to detect this range of declines was set at 80% which is widely used for power 175 

analyses (power = 0.8; Elzinga and Salzer, 2007).  176 

Initial occupancy probability was based on occupancy results and predicted for each 177 

township within the Canada lynx range in Maine (Fig. 1). The distribution of snow track surveys 178 

was such that the full distribution of certain important predictor variables were under-179 

represented. Specifically, towns sampled during snow track surveys tended to be more recently 180 

disturbed than towns within the potential lynx range as a whole (Supplementary material 181 

Appendix B).  As a result, model intercepts from snow track survey occupancy models tended to 182 

over-predict occupancy when applied to the full project area. To produce occupancy probability 183 

maps to establish state-wide monitoring protocols, we implemented an adjustment method to 184 

normalize the model intercept to make predictions for both survey periods. For this 185 

normalization, we used camera trapping data collected by Mortelliti et al. (2022) in the same 186 

study area and applied a uniform adjustment to model predictions (Supplementary material 187 

Appendix B). Based on the corrected values of occupancy, we calculated the difference in 188 

occupancy between both surveys (proportional temporal change in occupancy): 189 

�������� 
ℎ��
� �� Ψ =
(����(Ψ���������) − ����(Ψ���������))

����(Ψ���������)
× 100� 190 

The initial detection probability was also based on the occupancy model results and was 191 

predicted for each township within the Canada lynx range in Maine. The top model for the 192 

detection process for both survey periods included time since snow and travel distance– two 193 

survey-level variables collected specifically for the towns we surveyed that cannot be 194 

extrapolated for the remaining townships. Including only these two would produce an 195 

unrealistically static detection probability throughout the state. Therefore, to account for the 196 
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spatial heterogeneity in the detection process, we used model averaging of all models that 197 

were 2.0 ΔAIC above the null model to predict detection probability across the state. Thus, 198 

variables included were: time since snow, travel distance, latitude, disturbance, and conifer for 199 

the first period, and time since snow, travel distance, latitude, and disturbance for the second 200 

period. Model averaging was conducted using the R package MuMIn (Barton, 2020). 201 

The number of visits was fixed at 13 cells for the first survey period and 7 cells for the 202 

second. Though the average number of cells per township was 8 cells, we chose these values 203 

because they allow for a high (0.98) cumulative probability (p*) of detecting lynx at least once 204 

(Fig. A3). The different number of cells for each survey period were due to differences in 205 

detection probabilities between surveys: 206 

�∗ =  1 − (1 − �)   207 

where k is the number of cells required to achieve a given p* and p is the detection probability.  208 

The sampling effort to detect a given change in Canada lynx occupancy was calculated at 209 

the township level. We categorized the sampling effort (i.e. the number of townships) into five 210 

categories of habitat suitability: high (>80% occupancy probability), medium-high (60% - 80%), 211 

medium (40% - 60%), and medium-low (20% - 40%), and low suitability (< 20%).  212 

2.4 Cost analysis 213 

To assess the operational cost required for snow track surveys and the feasibility of monitoring 214 

protocols, we estimated the cost of surveying a single township and compared costs among 215 

sampling scenarios. The three main areas of cost expenditure were equipment, personnel, and 216 

travel (Table A1). Because the equipment was a fixed cost and not associated with variability 217 

among in-situ operations per se (e.g. acquisition and maintenance of snowmobiles) we did not 218 

include this category in the final calculations (Gálvez et al., 2016).  219 

Personnel costs were based on the US average field technician hourly wage of $20 per 220 

hour (including 33% overhead cost). We considered an average of 10 hours of work per day for 221 

a field crew of two people which is sufficient to survey one township. We also included lodging 222 

and food for the crew based on the US standard per diem rates. Travel costs considered field 223 
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vehicle and snowmobile travel distance. We assumed a constant travel distance to all 224 

townships because the Maine Department of Inland and Fisheries Wildlife has many field 225 

stations throughout the state. We fixed the travel distance to a survey township to 180 km, and 226 

the snowmobile travel distance within townships to 80 km.  227 

For any sampling scenario, the total project cost was given as the mean per-township 228 

cost multiplied by the total number of townships surveyed. For example, we multiplied the cost 229 

to survey one township by the average number of townships needed to detect a 30% decline in 230 

Canada lynx occupancy. We made this calculation for all monitoring protocols.  231 

We performed power and cost analyses for the two survey periods separately and also 232 

for the average between them (i.e. averaging detection and occupancy probabilities between 233 

surveys), obtaining qualitatively similar results. Therefore, we only show the results for the 234 

most recent survey, and the other results are included in the Supplementary material Appendix 235 

A (Figs. A4-A8). 236 

3 Results 237 

We detected 949 Canada lynx tracks among 262 grid cells (311 tracks in the first period [14% of 238 

the cells] and 638 in the second period [39% of the cells]). Thirty-five townships (44%) had a 239 

lynx track in the first period (2003 - 2008), while in the second period (2015 - 2019) we 240 

recorded lynx tracks in 51 townships (87%).  241 

3.1 Occupancy models 242 

The detectability of the Canada lynx increased with travel distance (β = 0.77; SE = 0.14) and 243 

decreased with time since last snowfall (β = -0.45; SE = 0.25) in the first period. For the second 244 

period, we found that detection increased with time since last snowfall (β = 0.24; SE = 0.11) and 245 

also increased with travel distance (β = 1.18; SE = 0.14) (Fig. 2; Table 1).  246 

We found that the probability of Canada lynx occupancy in the first period was greater 247 

in areas at higher latitude (β = 0.76; SE = 0.29) and with a larger proportion of conifer forest (β = 248 

0.54; SE = 0.28). This pattern remained the same for the second period but with a stronger 249 
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effect of latitude (β = 1.87; SE = 1.23) and conifer forest (β = 1.36; SE = 0.61) on the occupancy 250 

probability (Fig. 2; Table 1).  251 

For both surveys, the model’s estimated occupancy (i.e. average probability of 252 

occupancy across townships), after implementing the correction method with the camera 253 

trapping data, was very close to the naïve occupancy, with the average temporal increase in 254 

Canada lynx occupancy in Maine of 34% between the first and second survey periods (Fig. A9). 255 

3.2 Sampling effort and cost-effective monitoring 256 

The sampling effort required to detect different decline rates in occupancy varied considerably 257 

among protocols but were similar between periods (Fig. A4). For example, to detect a 10% 258 

decline in highly suitable habitats the sample size required was between 78 - 233 townships, 259 

whereas to detect a 50% decline in the same areas the sampling effort required was only 260 

between 7 - 12 townships (Fig. 3).  261 

The estimated cost to survey one township was $627.54 (Table A1). Protocols able to 262 

detect < 20% declines were 5-fold more expensive than protocols focused on detecting larger 263 

changes (> 30%) in some instances. For example, the average project cost to detect a 10% 264 

change in high suitability habitats was $97 582 whereas to detect a 30% change in the same 265 

areas the cost was $15 374; a nearly 6-fold decrease (Fig. 4). However, the average cost 266 

differences for detecting declines between 30 and 50% in high suitability habitats were less 267 

drastic – a 2.5-fold increase in the budget would allow detection of a 30% decline ($15 374) in 268 

occupancy instead of 50% ($5 961).  269 

4 Discussion 270 

Understanding how to optimally allocate sampling effort is essential to developing cost-271 

effective monitoring protocols, especially given limited conservation resources (McDonald-272 

Madden et al., 2008; Wintle et al., 2010). Using Canada lynx detection data collected through 273 

snow track surveys, we found that detection probability was affected by travel distance and 274 

time since snowfall. The probability of occupancy increased with both the proportion of conifer 275 

forest and latitude (Fig. 2). Besides the spatial patterns in occupancy, we also found a temporal 276 
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variation – the proportional occupancy probability of Canada lynx increased 34% on average 277 

between the two survey periods. Further, monitoring protocols with sufficient power to detect 278 

a small change in occupancy (<10%) were very expensive even for high suitability habitats. 279 

However, protocols focused on medium (30%) and large (50%) changes required relatively 280 

lower and similar budgets (a 2.5-fold difference in costs) and were consistent with the observed 281 

shifts in occupancy (34%) suggesting big gains in the minimal detectable change with a 282 

relatively small increase in the budget. Altogether, our results provide important guidelines to 283 

agencies on how to efficiently use conservation funds to properly implement targeted 284 

monitoring programs. 285 

For high-suitability areas, detecting a 50% decline in occupancy required surveys of 7 - 286 

12 townships, in comparison to 78 - 233 townships to detect a 10% decline (Fig. 3). The lower 287 

sampling effort for detecting a 50% decline in occupancy is an indication that practitioners 288 

should target their monitoring programs for smaller detectable changes (e.g. 30%) while 289 

ensuring a reasonable sampling scheme compatible with the size of the area monitored 290 

(Mortelliti et al., 2022). Importantly, before implementing these protocols, a careful design 291 

should de be planned following the basic sampling rules – surveying in a representative way 292 

throughout the environmental gradient that is biologically relevant for the species (Elzinga and 293 

Salzer, 2007). Other snow tracking studies have examined optimal sampling design to minimize 294 

errors in occupancy estimates (Aing et al., 2011) or the trade-off between spatial and temporal 295 

replicates to detect temporal declines in occupancy (Whittington et al., 2014). However, few 296 

have assessed the optimal sampling design required to detect a given change in occupancy and 297 

translated it into formal monitoring protocols (but see Hayward et al., 2002). Therefore, our 298 

study fills an important knowledge gap in developing effective and feasible snow track survey 299 

protocols that accounts for sample effort and fieldwork costs. 300 

While the cost-effectiveness of a monitoring protocol will inevitably be species-specific 301 

and context-dependent, our study provides useful guidelines to conservation agencies on the 302 

monetary costs of comparing population estimates between any two periods. We show that it 303 

is practically unfeasible to monitor for small changes in occupancy (<10%) outside the high 304 

suitability habitats as the initial occupancy is lower in those areas requiring more effort to 305 
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detect the species (Mackenzie and Royle, 2005). Nevertheless, monitoring outside the high 306 

suitability areas is also important because this allows tracking of changing conditions in the 307 

state variable (i.e. occupancy) throughout the population range (Aronsson and Persson, 2016). 308 

This is particularly relevant for monitoring different subpopulations of threatened species in 309 

which a subpopulation could go extinct if the monitoring program is only targeting a specific 310 

area (McDonald-Madden et al., 2008). Given limited conservation funding, it might be 311 

appropriate to implement a hybrid approach designed to detect a modest change (e.g. 30% 312 

decline) in high suitability areas while also monitoring for large changes in less suitable areas 313 

(e.g. 50% decline). Therefore, the impractically high costs of monitoring in low suitability 314 

habitats can be remedied by targeting large changes in occupancy in these areas. By monitoring 315 

areas that cover a wide range of habitat suitability, practitioners can have a better picture of 316 

the overall population status (Yoccoz et al., 2001; Lindenmayer et al., 2013).  317 

Detection probability is crucial for designing the optimal effort allocation because as 318 

detection increases the sampling effort required to detect a trend tends to decrease (Hines et 319 

al., 2010; Steenweg et al., 2016; Lima et al., 2020). Similar to with previously established 320 

patterns of snow track surveys, we found that travel distance and time since snow influenced 321 

the detection probability of Canada lynx. The inconsistent relationship between detection 322 

probability and time since snowfall (compare Fig. 2A and 2E) suggests that snow quality (e.g. 323 

powder vs crust) (Hostetter et al., 2020), rather than time facilitates track detection. As our 324 

analysis is based on mean detection rates during each phase of the study, our conclusions 325 

related to survey efficiency reflect the snow conditions experienced during each survey period. 326 

We also found that the first survey period required a higher survey effort (130 km) to have a 327 

98% chance of detecting at least one track than the second period (70 km; Fig. A3). The 328 

temporal change in detectability is an empirical example of the importance of adaptive 329 

monitoring: changing the monitoring regime to more rigorously quantify the changes in the 330 

population estimates (McDonald-Madden et al., 2010; Lindenmayer et al., 2013), and also 331 

calculating the cumulative detection probability (p*) in occupancy models (Steenweg et al., 332 

2016; Lima et al., 2020). Altogether, this suggests that both survey site and intensity affect the 333 
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cost and feasibility of monitoring protocols and thus managers should seek to maximize 334 

detection to achieve greater confidence in the animal’s presence or absence.  335 

Our occupancy results are consistent with the known biology of the Canada lynx 336 

(Vashon et al., 2008; Hostetter et al., 2020), which are usually associated with young conifer 337 

forests due to the high density of snowshoe hares in these areas (Vashon et al., 2008). Because 338 

Maine is at the southern limit of the species range (King et al., 2020), the increase in the 339 

occupancy probability with latitude was also expected. We found that the occupancy increased 340 

by 34% between surveys demonstrating that our protocols are feasible and able to detect real 341 

changes in the species occupancy. Studies have documented that the Canada lynx is suffering 342 

range contractions and a decline in occupancy due to habitat loss and climate change in many 343 

parts of North America (Hostetter et al., 2020; King et al., 2020). However, the increase in 344 

occupancy in Maine is not surprising as this pattern has been reported repeatedly since the 345 

1990s (Simons-Legaard et al., 2013). This may be related to disturbances regimes created by 346 

intense and partial timber harvest that generate habitats for snowshoe hare, and thus increase 347 

lynx density in such environments (Vashon et al., 2008). Despite the positive temporal change 348 

and its causes, we opted to develop protocols focusing on detecting declines and not increases 349 

in the occupancy estimates. Although the algorithm is sensitive to the direction of the change 350 

to be detected (Guillera-Arroita and Lahoz-Monfort, 2012), monitoring decline is always likely 351 

to be a higher priority for threatened species.  352 

5 Conclusions 353 

We developed optimal monitoring protocols to detect changes in Canada lynx occupancy 354 

between two time periods. Our analyses suggest that the high cost of implementing monitoring 355 

protocols able to detect small changes in occupancy (< 20% decline) might make snow track 356 

surveys unfeasible. However, a 2.5-fold increase can allow monitoring for intermediate changes 357 

in occupancy rather than large changes, which in our case were consistent with the observed 358 

shifts in occupancy (34%). Therefore, a modest increase in the survey investment may generate 359 

an excellent return in understanding a population’s status. We also found that time since 360 

snowfall affected detection in a relatively complex way suggesting that snow quality (e.g. 361 
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powder vs crust) is more important than time. We suggest that careful consideration of snow 362 

quality is given to maximize detection rates. Surveying when snow conditions are poor could 363 

risk under-sampling relative to the mean detection rate, and thus data would not be consistent 364 

with sufficient power to detect desired trends. These results can be used as general rules that 365 

could guide conservation agencies worldwide as such patterns are likely to be relevant to other 366 

systems. Further, because we only accounted for the costs of in-situ operations our results are 367 

likely to hold for other survey techniques such as camera trapping (Mortelliti et al., 2022). Due 368 

to limited resources available for conservation, practitioners and researchers must work 369 

together to maximize monitoring efficiency while minimizing monetary costs. 370 
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Tables and Figures 518 

 519 

 520 

Fig. 1: Map of the study area in Maine, northeastern Unites States. Townships (different colors 521 

in the map represent the survey period) were surveyed within current and past Canada lynx 522 

distribution range (red and blue lines respectively) in Maine. Townships outlined in gray are the 523 

townships that we did not survey but were considered when conducting optimal monitoring 524 

protocols assessments. The upper right panel shows an example of a 5 km x 5 km grid cell within 525 

a township with georeferenced survey routes.  526 
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 527 

 528 

Fig. 2: Predictions from the top-ranked single-season occupancy models. Surveys during the first 529 

period (2003-2008; panels A-D) were conducted in 78 townships while those of the second 530 

period (2015-2019; panels E-H) were conducted in 58 townships throughout Maine, USA. 531 

Canada lynx detection probability (p) increased with travel distance in both surveys and declined 532 

with time since snow in the first period while increased in the second period. Occupancy 533 

probability (Ψ) for both surveys increased with the proportion of conifer forest and latitude. 534 

Color ribbons indicate the 95% CI.  535 
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 536 

Fig. 3: Optimal monitoring protocol for Canada lynx in Maine based on the survey conducted 537 

between the years 2015 – 2019. Each panel represents the sampling effort required to detect (a) 538 

50%; (b) 30%; and (c) 10% decline in occupancy. Sampling effort refers to the total number of 539 

townships to be surveyed across the same category of habitat suitability. For example, to detect 540 

a 30% decline in Canada lynx occupancy across all areas colored in the lightest color (high 541 

suitable habitats), 17 to 32 townships are required.  542 
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 543 

Fig. 4: Cost-effectiveness of different monitoring protocols. This figure shows the average 544 

budget necessary to detect a range of 10 to 50% decline in Canada lynx occupancy in four levels 545 

of habitat suitability using data collected through snow track surveys between the years 2015 - 546 

2019. To facilitate visualization we removed the low habitat suitability curve but the full figure 547 

with all categories is provided in Supplementary Material Appendix A (Fig. A6). 548 

 549 

 550 

 551 

 552 

 553 
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Table 1: Top ranking single-season occupancy models for the two Canada lynx survey periods 554 

(only models within 5 ΔAIC from the top model are shown). Models within 2 ΔAIC are in bold. 555 

Detection history data were collected between the years 2003 – 2008 in 78 townships and 556 

between the years 2015 – 2019 in 58 townships. Conifer = proportion of conifer; latitude = 557 

township centroid; disturbance = forest disturbance index; distance = travel distance in km; 558 

snow = time since the last snowfall; K = number or parameters; ΔAIC = Delta Akaike Information 559 

Criterion; AIC Weight = Akaike weight; R2 = Nagelkerke’s R squared. 560 

Survey period Model K AIC ΔAIC AIC Weight R2 

2003 - 2008 
 
 
 

Ψ(latitude + conifer town) 

p(distance + snow) 
6 420.89 0.00 0.54 0.46 

Ψ(latitude) p(distance + snow) 5 422.94 2.03 0.20 
0.43 

 
Ψ(latitude + conifer 8k buffer) 

p(distance + snow) 
6 424.89 4.00 0.07 0.43 

 
Ψ(latitude*disturbance town) 

p(distance + snow) 
7 425.68 4.79 0.05 0.43 

2015 - 2019 
 
 

Ψ(latitude + conifer 8k buffer) 

p(distance + snow) 
6 490.17 0.00 0.65 0.84 

Ψ(latitude + conifer town) 
p(distance + snow) 

6 492.41 2.23 0.21 0.83 

Ψ(conifer 8k buffer) p(distance 
+ snow) 

5 494.71 4.54 0.06 0.82 

 561 




